N7 - THERMODYNAMICS

Gibbs Free Energy

Link to YouTube Presentation: https://youtu.be/9IUI6T5ynfU

N7 - THERMODYNAMICS Gibbs Free Energy

Target: I can use the relationships between Gibbs Free Energy, Enthalpy, Entropy, and Equilibrium to solve for a variety of things.

HOW WE GOT THE GIBBS EQUATION AND MENTAL MATH USING IT

Gibbs free energy, *G* - the maximum amount of work energy that can be released to the surroundings by a system for a constant temp and pressure system.

Gibbs free energy is often called the **chemical potential** because it is similar to the storing of energy in a mechanical system.

We saw last time that:

$$\Delta S_{\text{univ}} = \Delta S_{\text{sys}} - \frac{\Delta H_{\text{sys}}}{T}$$

This turns into...

$$-\mathbf{T}\Delta S_{\text{univ}} = \Delta H_{\text{sys}} - \mathbf{T}\Delta S_{\text{sys}}$$

This should remind you of something!!!

$$-\mathbf{T}\Delta S_{univ} = \Delta H_{sys} - \mathbf{T}\Delta S_{sys}$$
$$\Delta G_{sys} = \Delta H_{sys} - \mathbf{T}\Delta S_{sys}$$

Therefore... $\Delta G_{\rm sys} = -T\Delta S_{\rm univ}$

Another helpful rearrangement!

$\Delta G_{\rm sys} = -T\Delta S_{\rm univ}$

- Because ΔS_{univ} determines if a process is spontaneous, ΔG also determines spontaneity.
- ΔS_{univ} is positive when spontaneous, so ΔG is negative when spontaneous

Gibbs-Helmholtz Equation

$\Delta G_{\rm sys} = \Delta H_{\rm sys} - T\Delta S_{\rm sys}$

Important Equation!!!

A process will be spontaneous when ΔG is negative

Important fact that lets us do a lot of math! Me: What do I say to her?? Friend: Bro, just be spontaneous, girls love that. Me: okay Me: Today 9:27 PM $\Delta G < 0$ Read 9:27 PM Um... iMessage

Mental Math with Gibbs Free Energy

It is very common for them to ask you to predict if a reaction is spontaneous based on just the algebraic sign on ΔH and ΔS

You need to use the Gibbs equation to see if ΔG ends up + or -

$$\Delta \boldsymbol{G}_{\rm sys} = \Delta \boldsymbol{H}_{\rm sys} - \mathbf{T} \Delta \boldsymbol{S}_{\rm sys}$$

Mental Math with Gibbs Free Energy

This always makes my brain feel scrambled... figure out what works for you.

- Flat out memorize it (best, fastest)
- Write out the equation and +/- and walk through the mental math each time (what I do because I'm lazy, and I'm not taking timed tests like you are – ha!)
- Find/make a mnemonic? (Tell me if you find a good one!)

YOU CAN'T LET YOUR BRAIN SHUT DOWN Don't let it feel confused and shut off... just walk through it slowly...

Remember T is in Kelvin, always a positive number

Remember T is in Kelvin, always a positive number

$\Delta H_{\rm sys} - T\Delta S_{\rm sys} = \Delta G_{\rm sys}$				
ΔH	ΔŠ	ΔG	At	GLUE
exothermic	+ more disorder	ALWAYS spont.	Any temp	
+ endothermic	less disorder	↓ NEVER spont.	Any temp	
exothermic	less disorder	spont.	Low Temp	
exothermic	less disorder	∳ NOT spont.	High Temp	
+ endothermic	+ more disorder	spont.	High Temp	
+ endothermic	+ more disorder	➡ NOT spont.	Low Temp	

	∆H <o< th=""><th>∠H > O</th><th></th></o<>	∠H > O	
∆s > 0	spontaneous at all T (AG<0)	Spontaneous at high T (when TAS is large)	So many versions online, find one you
DS40	Spontaneous at low T (when TAS is small)	Non-spontaneous at all T (DG>O)	like! If you find a good one, always share with me! ©

Now it is time for some math!

Calculating Free Energy

Method #1- Standard Free Energy of Formations

$$\Delta G^{0} = \sum n_{p} \Delta G^{0}_{f(\text{products})} - \sum n_{r} \Delta G^{0}_{f(\text{reactants})}$$

 ΔG_f° of an element in its standard state is zero

Calculating Free Energy

Method #2- Gibbs-Helmohotz Equation

$\Delta \mathbf{G}^{\circ} = \Delta \mathbf{H}^{\circ} - \mathbf{T} \Delta \mathbf{S}^{\circ}$

For reactions at a constant temperature

Calculating Free Energy

Method #3- A variation of Hess's Law

C _{diamond} (s) +	$O_2(g) \rightarrow$	CO ₂ (g)	∆ G ⁰ = -397 kJ
C _{graphite} (s) +	O₂(g) →	CO ₂ (g)	$\Delta G^{0} = -394 \text{ kJ}$

$$C_{diamond}(s) + Q_{2}(g) \rightarrow CQ_{2}(g) \qquad \Delta G^{0} = -397 \text{ kJ}$$

$$CQ_{2}(g) \rightarrow C_{graphite}(s) + Q_{2}(g) \qquad \Delta G^{0} = +394 \text{ kJ}$$

$$C_{diamond}(s) \rightarrow C_{graphite}(s) \qquad \Delta G^{0} = -3 \text{ kJ}$$

PART 2 CONNECTION TO EQUILIBRIUM

The value of ΔG° can indicate the ratios of products to reactants at equilibrium.

The ratio of products to reactants is also indicated by a value you already know from equilibrium....

Κ

"Rat Link Equation"

 $\Delta G^{\circ} = -RTLn(K)$

where R=8.314J/mol•K

CAREFUL!!! △ G° in kJ but.... R in J CONVERT UNITS TO MATCH!

Solving for K

$$Ln(K) = \frac{-\Delta G^{\circ}}{RT}$$

Isolate Ln(K).

Do you remember how to "undo" a natural logarithm???

CAREFUL!!! △ G° in kJ but.... R in J CONVERT UNITS TO MATCH!

e raised to all that other "stuff" gives you what is inside the natural logarithm!

Not always at standard state!

In that case you would use ΔG instead of ΔG°

Like using Q instead of K if you weren't at equilibrium!

Gibbs at Equilibrium

When $\Delta G = 0$ the reaction is at **equilibrium**.

 $\Delta G = 0 \rightarrow @$ equilibrium! BUT ΔG° does NOT always = 0 at equilibrium!

 $\Delta G^{\circ} = 0$ only if [reactants] = [products] when at equilibrium.

$\Delta G = \Delta H - T \Delta S$

- 1 G decreasing, forward direction "thermodynamically favorable," spontaneous, will proceed.
- 3 G increasing, forward direction NOT "thermodynamically favorable." Non-spontaneous, rxn won't continue forward on its own.
- **2** ΔG, at equilibrium. No net change in rxn.

Gibbs at Equilibrium

Gibbs Free Energy Determines the Direction of Spontaneous Change

Equilibrium point occurs at the lowest value of free energy available to the reaction system At equilibrium: $\Delta G = 0$ and K = Q

ΔG	K vs Q	
$\Delta G = 0$	K = Q	@ equilibrium
$\Delta G < 0$	K > Q	Shift right
$\Delta G > 0$	K < Q	Shift left

$\Delta \mathbf{G} = \Delta \mathbf{G}^{\circ} + \mathbf{RTLn}(\mathbf{Q})$

Where ΔG is at some non standard condition,

and ΔG^0 is standard 1 atm,

Q is some condition not at equilibrium

 $\frac{Remember}{K} = equilibrium, Q = not at equilibrium K = Q at equilibrium$

$\Delta G = \Delta G^{\circ} + RTLn(Q)$

So if at equilibrium $\Delta G = 0$ and $K = Q \dots$

$\mathbf{0} = \Delta \mathbf{G}^{\circ} + \mathbf{RTLn}(\mathbf{K})$

Then rearrange...look what we are back to! ③

$\Delta G^{\circ} = -RTLn(K)$

where R=8.314J/mol•K

So if...

And if...

$\Delta G^{\circ} = -RTLn(K)$ $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$

Then...

$\Delta G^0 = -RT \ln(K) = \Delta H^0 - T\Delta S^0$

$$\Delta G^0 = -RT \ln(K) = \Delta H^0 - T\Delta S^0$$

Rearrange to solve for ln(K)....

$$\ln(K) = -\frac{\Delta H^{0}}{RT} + \frac{\Delta S^{0}}{R} = -\frac{\Delta H^{0}}{R} \left(\frac{1}{T}\right) + \frac{\Delta S^{0}}{R}$$

So.... ln(K) \propto 1/T
AND...that equation looks like y = mx + b

You can find ΔH° and ΔS° by graphing! $\ln(K) = -\frac{\Delta H^{\circ}}{R} \left(\frac{1}{T}\right) + \frac{\Delta S^{\circ}}{R}$ y = m x + b

1st - Graph In(K) vs $\left(\frac{1}{T}\right)$ 2nd - Find line of best fit (Excel or graphing calculator)3rd - Slope = $-\frac{\Delta H^{\circ}}{R}$ Intercept = $\frac{\Delta S^{\circ}}{R}$

Soooo many rearrangements...

- There are so many ways to rearrange, substitute, and solve for various things when it comes to Thermodynamics.
 You HAVE to have decent algebra skills!
- My best advice if algebra is not your strong suit...
 - Practice over and over until it becomes "muscle memory" how to rearrange.
 - Every time you have a question that requires a different equation rearrangement/substitution, write it down! Start making your own equation cheat sheet.

A Few Odds and Ends Reminders

If you use the Hess's Law style method for Gibbs problems, where you have to add together various rxns, you need to edit your Keq value when you add/multiply your equations!

Multiplying an Equation – Raise K to that exponent Double the Rxn = K² Half the Rxn = K^{1/2} Adding Reactions at the End – Multiply K values $K_{overall} = K_1 \times K_2 \times K_3$, etc Reversing a reaction – take reciprocal of K value K' = 1/K

<u>Then</u> you can do things like $\Delta G^{\circ} = -RTLn(K)$

Free Energy and Pressure

- Enthalpy, H, is <u>not</u> pressure dependent
- Entropy, S <u>yes</u> pressure dependent
 - -Depends on volume, so also depends on pressure
- So Gibbs will change because S changes

Slarge volume > Ssmall volume
Slow pressure > Shigh pressure

Phase Changes

- Phase changes are equilibriums!
- So during a phase change $\Delta G = 0$
 - Helps you do calculations to figure out the temperature at which phase changes can happen!

Technically...

We shouldn't be using $\Delta G = 0$ with ΔH° and ΔS° values, since ΔH° and ΔS° would usually be at the "standard" 25°C...but we just pretend they are not temperature dependent to be able to approximate our answer. Is that "bad" ??? Sure...but do we care??? Apparently not! S

Some Practice Problems

#1 - For the following Rx: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ Calculate the standard Free Energy, ∆G° for the rxn at 25°C. ∆H°= -264kJ/mol ∆S°= -278 J/mol•K

▶ 181 KJ mol⁻¹

#1 - For the following Rx: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ Calculate the standard Free Energy, ΔG° for the rxn at 25°C. \wedge H°= -264kJ/mol \wedge S°= -278 J/mol•K

A -82.5 KJ mol⁻¹

E

- **B** -181 KJ mol⁻¹
 - -6686 KJ mol⁻¹
- 181 KJ mol⁻¹ D
 - None of the above

 $\wedge \mathbf{G}^{\circ} = \wedge \mathbf{H}^{\circ} - \mathbf{T} \wedge \mathbf{S}^{\circ}$ $\Delta G^{\circ} = (-264) - 298(-0.278)$ $\Delta G^{\circ} = -181 \text{ KJ mol}^{-1}$

> **Careful about units matching!** H and S usually don't match! **Convert before you use them!**

#2 -	Calculate the	Boiling Point o	of BCI ₃ .		
BCI ₃	(1) \leftrightarrow BCI _{3(g).} (Given:		H _f	S
Phase change - at equilibrium! So $\wedge G = 0$		auilibriuml		kJ/mol	J/mol k
		BCl ₃ (<i>I</i>)	-418	209	
			$BCI_{3}(g)$	-395	290
A	352 K				
B	275 K	$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$			
C	322 K	0 = (-395418) - T(0.290 - 0.209)			
D	284 K	T = 284 K			
E	10 K				

#3 - Under standard conditions (1 atm of NH_3 , N_2 and H_2) and at 298 K, what substance(s) will be formed? ($\Delta G^{\circ} = 33.4 \text{ kJ}$) $2 \text{ NH}_3(g) \rightarrow N_2(g) + 3 \text{ H}_2(g)$

 \mathbf{B} N₂ and H₂

- Equal amounts of all three gases
- Need more information

#3 - Under standard conditions (1 atm of NH₃, N₂ and H₂) and at 298 K, which substance(s) will be formed? ($\Delta G^{\circ} = 33.4 \text{ kJ}$) **2 NH₃(g)** \rightarrow N₂(g) + 3 H₂(g)

∆G = + so not spontaneous in forward direction, reactants will be produced not products

Equal amounts of all three gases

Need more information

B N₂ and H₂

#4 - Calculate the equilibrium constant for this reaction at 298 K. 2 $NH_3(g) \rightarrow N_2(g) + 3 H_2(g) (\Delta G^\circ = 33.4 \text{ kJ})$

Need to know equilibrium []'s to calculate Keq

#4 - Calculate the equilibrium constant for this reaction at 298 K. **2 NH₃(g)** → N₂(g) + 3 H₂(g) ($\Delta G^{\circ} = 33.4 \text{ kJ}$)

1.014

609048.5

equilibrium []'s

to calculate Keq

А

B

 $\Delta G^{\circ} = -RT \ln(K)$ $33400 = -(8.314)(298)\ln(K)$ $-13.48 = \ln(K)$ C 1.397 E-6 ln(y) = x $e^x = y$ Need to know $e^{-13.48} = K$

 $K = 1.397 \times 10^{-6}$

Link to YouTube Presentation

https://youtu.be/9IUI6T5ynfU